A family of 2-arc transitive pentagraphs with unbounded valency
نویسندگان
چکیده
منابع مشابه
Arc-transitive graphs of valency 8 have a semiregular automorphism∗
One version of the polycirculant conjecture states that every vertex-transitive graph has a non-identity semiregular automorphism that is, a non-identity automorphism whose cycles all have the same length. We give a proof of the conjecture in the arc-transitive case for graphs of valency 8, which was the smallest open valency.
متن کاملAn infinite family of biquasiprimitive 2-arc transitive cubic graphs
A new infinite family of bipartite cubic 3-arc transitive graphs is constructed and studied. They provide the first known examples admitting a 2-arc transitive vertex-biquasiprimitive group of automorphisms for which the stabiliser of the biparts is not quasiprimitive on either bipart.
متن کاملA Classification of 2-Arc-Transitive Circulants
A graph X is k-arc-transitive if its automorphism group acts transitively on the set of it-arcs of X. A circulant is a Cayley graph of a cyclic group. A classification of 2-arc-transitive circulants is given.
متن کاملClassification of a family of symmetric graphs with complete 2-arc-transitive quotients
In this paper we give a classification of a family of symmetric graphs with complete 2-arc transitive quotients. Of particular interest are two subfamilies of graphs which admit an arc-transitive action of a projective linear group. The graphs in these subfamilies can be defined in terms of the cross ratio of certain 4-tuples of elements of a finite projective line, and thus may be called the s...
متن کاملA class of symmetric graphs with 2-arc transitive quotients
Let Γ be a finite X-symmetric graph with a nontrivial Xinvariant partition B on V (Γ) such that ΓB is a connected (X, 2)-arctransitive graph and Γ is not a multicover of ΓB. A characterization of (Γ,X,B) was given in [20] for the case where |Γ(C) ∩ B| = 2 for B ∈ B and C ∈ ΓB(B). This motivates us to investigate the case where |Γ(C) ∩ B| = 3, that is, Γ[B,C] is isomorphic to one of 3K2, K3,3 − ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial
سال: 2013
ISSN: 2640-7345,2640-7337
DOI: 10.2140/iig.2013.13.141